PHYSICAL REVIEW B 80, 085407 (2009)

Strong exciton-plasmon coupling in semiconducting carbon nanotubes
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We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-
diameter (=1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result
in strong exciton-surface-plasmon coupling. The exciton absorption line shape exhibits Rabi splitting ~0.1 eV
as the exciton energy is tuned to the nearest interband surface-plasmon resonance of the nanotube. We also
show that the quantum confined Stark effect may be used as a tool to control the exciton binding energy and
the nanotube band gap in carbon nanotubes in order, e.g., to bring the exciton total energy in resonance with
the nearest interband plasmon mode. The exciton-plasmon Rabi splitting we predict here for an individual
carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures
artificially fabricated of organic semiconductors on metallic films. We expect this effect to open up paths to
new tunable optoelectronic device applications of semiconducting carbon nanotubes.
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I. INTRODUCTION

Single-walled carbon nanotubes (CNs) are quasi-one-
dimensional (1D) cylindrical wires consisting of graphene
sheets rolled up into cylinders with diameters ~1-10 nm
and lengths ~1-10* um.'~* CNs are shown to be useful as
miniaturized electronic, electromechanical, and chemical
devices,’ scanning probe devices,® and nanomaterials for
macroscopic composites.” The area of their potential appli-
cations was recently expanded to nanophotonics®~'! after the
demonstration of controllable single-atom encapsulation into
CNs (Refs. 12—-15) and even to quantum cryptography since
the experimental evidence was reported for quantum corre-
lations in the photoluminescence spectra of individual
nanotubes. '

For pristine (undoped) single-walled CNs, the numerical
calculations predicting large exciton binding energies
(~0.3-0.6 eV) in semiconducting CNs (Refs. 17-19) and
even in some small-diameter (~0.5 nm) metallic CNs,2° fol-
lowed by the results of various exciton photoluminescence
measurements,'®2'-2> have become available. These works,
together with other reports investigating the role of
effects such as intrinsic defects,”»?® exciton-phonon
interactions,?*?%-2% external magnetic and electric fields,3%-32
reveal the variety and complexity of the intrinsic optical
properties of CNs.3

Here, we develop a theory for the interactions between
excitonic states and surface electromagnetic (EM) modes in
small-diameter (=<1 nm) semiconducting single-walled
CNs. We demonstrate that such interactions can result in a
strong exciton-surface-plasmon coupling due to the presence
of low-energy (~0.5-2 eV) weakly dispersive interband
plasmon modes* and large exciton excitation energies
~1 eV (Refs. 35 and 36) in small-diameter CNs. Previous
studies have been focused on artificially fabricated hybrid
plasmonic nanostructures, such as dye molecules in organic
polymers deposited on metallic films,?” semiconductor quan-
tum dots coupled to metallic nanoparticles,*® or nanowires,*
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where one material carries the exciton and another one car-
ries the plasmon. Our results are particularly interesting since
they reveal the fundamental EM phenomenon—the strong
exciton-plasmon coupling—in an individual quasi-1D nano-
structure, a carbon nanotube.

The paper is organized as follows. Section II presents the
general Hamiltonian of the exciton interaction with vacuum-
type quantized surface EM modes of a single-walled CN. No
external EM field is assumed to be applied. The vacuum-
type-field we consider is created by CN surface EM fluctua-
tions. In describing the exciton-field interaction on the CN
surface, we use our recently developed Green’s function for-
malism to quantize the EM field in the presence of quasi-1D
absorbing bodies.***> The formalism follows the original
line of the macroscopic quantum electrodynamics (QED) ap-
proach developed by Welsch and co-workers to correctly de-
scribe medium-assisted electromagnetic vacuum effects in
dispersing and absorbing media*~*® (also references
therein). Section III explains how the interaction introduced
in Sec. II results in the coupling of the excitonic states to the
nanotube’s surface-plasmon modes. Here, we derive, calcu-
late, and discuss the characteristics of the coupled exciton-
plasmon excitations, such as the dispersion relation, the plas-
mon density of states (DOS), and the optical-absorption line
shape, for particular semiconducting CNs of different diam-
eters. We also analyze how the electrostatic field applied per-
pendicular to the CN axis affects the CN band gap, the ex-
citon binding energy, and the surface-plasmon energy to
explore the tunability of the exciton-surface-plasmon cou-
pling in CNs. The summary and conclusions of the work are
given in Sec. IV. All the technical details about the construc-
tion and diagonalization of the exciton-field Hamiltonian, the
EM field Green’s tensor derivation, and the perpendicular
electrostatic field effect are presented in the Appendixes
in order not to interrupt the flow of the arguments and
results.
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FIG. 1. (Color online) The geometry of the problem.

II. EXCITON-ELECTROMAGNETIC-FIELD
INTERACTION ON THE NANOTUBE SURFACE

We consider the vacuum-type EM interaction of an exci-
ton with the quantized surface electromagnetic fluctuations
of a single-walled semiconducting CN by using our recently
developed Green’s function formalism to quantize the EM
field in the presence of quasi-1D absorbing bodies.***> No
external EM field is assumed to be applied. The nanotube is
modeled by an infinitely thin, infinitely long, anisotropically
conducting cylinder with its surface conductivity obtained
from the realistic band structure of a particular CN. Since the
problem has the cylindrical symmetry, the orthonormal cy-
lindrical basis {e,.e,,e} is used with the vector e, directed
along the nanotube axis as shown in Fig. 1. Only the axial
conductivity, o, is taken into account, whereas the azi-
muthal one, o, being strongly suppressed by the transverse
depolarization effect,*** is neglected.

The total Hamiltonian of the coupled exciton-photon sys-
tem on the nanotube surface is of the form

H=H,+H, +H,, (1)

where the three terms represent the free (medium-assisted)
EM field, the free (noninteracting) exciton, and their interac-
tion, respectively. More explicitly, the second-quantized field
Hamiltonian is

Hp=, f dofwf (n,w)f(n, o), (2)
n 0

where the scalar bosonic field operators '(n, ) and f(n, o)
create and annihilate, respectively, the surface EM excitation
of frequency w at an arbitrary point n=R,={Rcn.¢,,2.}
associated with a carbon atom (representing a lattice site,
Fig. 1) on the surface of the CN of radius Rcy. The summa-
tion is made over all the carbon atoms, and in the following
it is replaced by the integration over the entire nanotube sur-
face according to the rule

1 1 (%> *
E---=S—den---=S—f dsonRCNf dz, -+, (3)
0

n 0J0 —o0

where S,=(313/4)b? is the area of an elementary equilateral
triangle selected around each carbon atom in a way to cover
the entire surface of the nanotube and b=1.42 A is the
carbon-carbon interatomic distance.

The second-quantized Hamiltonian of the free exciton
(see, e.g., Ref. 55) on the CN surface is of the form
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FIG. 2. (Color online) Schematic of the two transversely quan-
tized azimuthal electron-hole subbands (left) and the first-interband
ground-internal-state exciton energy (right) in a small-diameter
semiconducting carbon nanotube. Subbands with indices j=1 and 2
are shown, along with the optically allowed (exciton-related) inter-
band transitions (Ref. 53). See text for notations.

H, = 2 E{n)B} ., By = EEf(k)kaka, )

n,m,f

where the operators BT ns and By, create and annihilate, re-
spectively, an exciton with the energy E(n) in the lattice site
n of the CN surface. The index f(#0) refers to the internal
degrees of freedom of the exciton. Alternatively,

1 .
By ;= ?2 B} *" and By ;= (By )’ &)

VN n
create and annihilate the f-internal-state exciton with the
quasimomentum k={k,,k_}, where the azimuthal component
is quantized due to the transverse confinement effect and the
longitudinal one is continuous, N is the total number of the
lattice sites (carbon atoms) on the CN surface. The exciton
total energy is then written in the form

w2k

(ko) + 57— —. (6)

B =B 2M (k)

Here, the first term represents the excitation energy

EJ) (kp) = Ey(ky) + ng)(kqo) (7)

exc

of the f-internal-state exciton with the (negative) binding en-
ergy E,gf ), created via the interband transition with the band

gap
Eg(k<p) = se(kq)) + eh(kzp)? (8)

where g, ), are transversely quantized azimuthal electron-hole
subbands (see the schematic in Fig. 2). The second term in
Eq. (6) represents the kinetic energy of the translational lon-
gitudinal movement of the exciton with the effective mass
M, .=m,+my;,, where m, and m,, are the (subband-dependent)
electron and hole effective masses, respectively. The two
equivalent free-exciton Hamiltonian representations are re-
lated to one another via the obvious orthogonality relation-
ships
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1 _i(k=k')- 1 —i(n—m)-
N2 S Bae 2= G, )

with the k summation running over the first Brillouin zone of

the nanotube. The bosonic field operators in H F are trans-
formed to the k representation in the same way.

The most general (nonrelativistic, electric dipole) exciton-
photon interaction on the nanotube surface can be written in
the form (we use the Gaussian system of units and the Cou-
lomb gauge; see details in Appendix A)

Hy= 2 | do[gf’(nm,w)B],

nm,f Y0
— g (n,m,w)B, /] f(m,w) + He., (10)
where
(*) _ L L@
gy (nm,w)=g; (n,m,w) = " gimmw)  (11)
f
with

4w
ng)(n,m,w) =- i?f\s'ﬂ'hw Re 0.(Ren, )

X(d})G..(n,m, ) (12)

being the interaction matrix element where the exciton with
the energy EY =hawy is excited through the electric-dipole

transition (d/),=(0|(d,),|f) in the lattice site n by the nano-
tube’s transversely (longitudinally) polarized surface EM
modes. The modes are represented in the matrix element by
the transverse (longitudinal) part of the Green’s tensor zz
component G_.(n,m, w) of the EM subsystem (Appendix B).
This is the only Green’s tensor component we have to take
into account. All the other components can be safely ne-
glected as they are greatly suppressed by the strong trans-
verse depolarization effect in CNs.*** As a consequence,
only o.(Rcn, w), the axial dynamic surface conductivity per
unit length, is present in Eq. (12). Equations (1)-(12) form
the complete set of equations describing the exciton-photon
coupled system on the CN surface in terms of the EM field
Green’s tensor and the CN surface axial conductivity.

III. EXCITON-SURFACE-PLASMON COUPLING

For the following, it is important to realize that the trans-
versely polarized surface EM mode contribution to the inter-
action (10)—(12) is negligible compared to the longitudinally
polarized surface EM mode contribution. As a matter of fact,
LGzz(n,m,w) =0 in the model of an infinitely thin cylinder
we use here (Appendix B), thus yielding

. w
gFme) =0, ¢ (nmw) =+ —gnm,w)
¥ ¥ !

(13)

in Egs. (10)—(12). The point is that, because of the nanotube
quasi-one dimensionality, the exciton quasimomentum vector
and all the relevant vectorial matrix elements of the momen-
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tum and dipole moment operators are directed predominantly
along the CN axis (the longitudinal exciton; see, however,
Ref. 56). This prevents the exciton from the electric-dipole
coupling to transversely polarized surface EM modes as they
propagate predominantly along the CN axis with their elec-
tric vectors orthogonal to the propagation direction. The lon-
gitudinally polarized surface EM modes are generated by the
electronic Coulomb potential (see, e.g., Ref. 57) and there-
fore represent the CN surface-plasmon excitations. These
have their electric vectors directed along the propagation di-
rection. They do couple to the longitudinal excitons on the
CN surface. Such modes were observed in Ref. 34. They
occur in CNs both at high energies (well-known 7 plasmon
at ~6 eV) and at comparatively low energies of
~0.5-2 eV. The latter ones are related to the transversely
quantized interband (inter—van Hove) electronic transitions.
These weakly dispersive modes®*® are similar to the inter-
subband plasmons in quantum wells.”® They occur in the
same energy range of ~1 eV where the exciton excitation
energies are located in small-diameter (<1 nm) semicon-
ducting CNs.3>3¢ In what follows, we focus our consider-
ation on the exciton interactions with these particular
surface-plasmon modes.

A. Dispersion relation

To obtain the dispersion relation of the coupled exciton-
plasmon excitations, we transfer the total Hamiltonian
(1)—(10) and (13) to the k representation using Egs. (5) and
(9) and then diagonalize it exactly by means of Bogoliubov’s
canonical transformation technique (see, e.g., Ref. 60). The
details of the procedure are given in Appendix C. The Hamil-
tonian takes the form

H= 2 ho,k)E K)E,(K) +E. (14)
k,u=1,2

Here, the new operator

&,(k) = 2 [u,(k, 0By ;— v,(k, ) By /]
f

+ f dolu,(k,0)f(k, ) - v} (ko) (- k )]

0
(15)

annihilates and é;(k)z[éﬁ(k)]"’ creates the exciton-plasmon
excitation of branch u. The quantities u, and v, are appro-
priately chosen canonical transformation coefficients. The
“vacuum” energy E, represents the state with no exciton-
plasmons excited in the system, and %w,(k) is the exciton-
plasmon energy given by the solution of the following (di-
mensionless) dispersion relation

2 (7l
xi_sl%_sf_f dx’M_
(o

== =0. (16)

.XM—X

Here,
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h ho, (kK EAk
NCH XM=£M szju, (17)
2% 2y 2y

with y,=2.7 eV being the carbon nearest-neighbor overlap
integral entering the CN surface axial conductivity
0..(Ren, w). The function

I:g(x) =

4|d§|2x3<%)2 (18)

3hc3 h

with d{:2n<0|((in)z /), represents the (dimensionless) spon-
taneous decay rate, and
35, 1

= Re
16maRsy  7.,(x)

p(x) (19)

stands for the surface-plasmon DOS which is responsible for
the exciton decay rate variation due to its coupling to the
plasmon modes. Here, a=e?/fic=1/137 is the fine-structure
constant and &,,=27ho,./e* is the dimensionless CN sur-
face axial conductivity per unit length.

Note that the conductivity factor in Eq. (19) equals

1 dac{ h 1
Re — == Im s (20)
Uzz(x) RCN 2’)/0)6 Ezz(x) -1

in view of Eq. (17) and equation o,=-iw(e_ —1)/4mSpy
representing the Drude relation for CNs, where € is the
longitudinal (along the CN axis) dielectric function, S and p;
are the surface area of the tubule and the number of tubules
per unit volume, respectively.*'*+30 This relates very closely
the surface-plasmon DOS function (19) to the loss function
—Im(1/€) measured in electron energy-loss spectroscopy
(EELS) experiments to determine the properties of collective
electronic excitations in solids.**

Figure 3 shows the low-energy behaviors of the functions
0..(x) and Re[1/a,.(x)] for the (11,0) and (10,0) CNs (Rcy
=0.43 and 0.39 nm, respectively) we study here. We obtained
them numerically as follows. First, we adapt the nearest-
neighbor nonorthogonal tight-binding approach® to deter-
mine the realistic band structure of each CN. Then, the room-
temperature longitudinal dielectric functions €, are
calculated within the random-phase approximation,5>%3
which are then converted into the conductivities o,, by
means of the Drude relation. Electronic dissipation processes
are included in our calculations within the relaxation-time
approximation (electron-scattering length of 130Rcy was
used?®). We did not include excitonic many-electron correla-
tions, however, as they mostly affect the real conductivity
Re(0,,) which is responsible for the CN optical
absorption,!®20°3  whereas we are interested here in
Re(1/4,,) representing the surface-plasmon DOS according
to Eq. (19). This function is only nonzero when the two
conditions, Im[&.(x)]=0 and Re[a,.(x)]—0, are fulfilled
simultaneously.’®>%62 These result in the peak structure of
the function Re(1/5,,) as is seen in Fig. 3. It is also seen
from the comparison of Fig. 3(b) to Fig. 3(a) that the peaks
broaden as the CN diameter decreases. This is consistent
with the stronger hybridization effects in smaller-diameter
CNs.%
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FIG. 3. (Color online) [(a) and (b)] Calculated dimensionless
(see text) axial surface conductivities for the (11,0) and (10,0) CNs.
The dimensionless energy is defined as [Energy]/2 7, according to
Eq. (17).

Left panels in Figs. 4(a) and 4(b) show the lowest-energy
plasmon DOS resonances calculated for the (11,0) and (10,0)
CNs as given by the function p(x) in Eq. (19). Also shown
there are the corresponding fragments of the functions
Re[d,.(x)] and Im[&..(x)]. In all graphs, the lower dimen-
sionless energy limits are set up to be equal to the lowest

44 11,0) 25 0.32-
z "I\ eRelo); (11,0) (11,0) (a)
= W : >
B 3] N\ ----imig) F20 20304 >
B2 oo 5 5028
8 R F5% o e
§ 1 s — S 20264 /
N 3y Fog S
S0 - O 2024
2 s
] S = 022
5 {, ©
T T 0 0.20 \
0224 024 0.26 0.28 0.30 0. 005 010 015 020
Dimensionless energy Di ionless quasil
. (10,0) 8 0.30-
% 6] G %0284
=1 3 6 - 2
B gls % > 026
8 L s 3
P % * 4 3 0244 :
8 2{ == S =
5 N 8 @022
E 0 Sl 2 m» o
S T T T e T £ 0.204 5
E " o
a T - - [ 0.18 5 . . . )
0185 021 024 0.27 0.30 000 005 010 015 020
Dimensionless energy Dimensi il

FIG. 4. (Color online) [(a) and (b)] Surface-plasmon DOS and
conductivities (left panels) and lowest bright exciton dispersion
when coupled to plasmons (right panels) in (11,0) and (10,0) CNs,
respectively. The dimensionless energy is defined as [Energy]/2 vy,
according to Eq. (17). See text for the dimensionless
quasimomentum.
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bright exciton excitation energy [E{!V=121 eV (x=0.224)
and 1.00 eV (x=0.185) for the (11,0) and (10,0) CN, respec-
tively, as reported in Ref. 35 by directly solving the Bethe-
Salpeter equation]. Peaks in p(x) are seen to coincide in en-
ergy with zeros of Im[a,.(x)] (or zeros of Re[ €., (x)]), clearly
indicating the plasmonic nature of the CN surface excitations
under consideration.’®% They describe the surface-plasmon
modes associated with the transversely quantized interband
electronic transitions in CNs.%® As is seen in Fig. 4 (and in
Fig. 3), the interband plasmon excitations occur in CNs
slightly above the first bright exciton excitation energy,’? in
the frequency domain where the imaginary conductivity (or
the real dielectric function) changes its sign. This is a unique
feature of the complex dielectric-response function, the con-
sequence of the general Kramers-Kronig relation.*

We further take advantage of the sharp peak structure of
p(x) and solve the dispersion Eq. (16) for x, analytically
using the Lorentzian approximation

2
p(xg)Ax (1)

pl) = (x - )c,,)2 + Axlzj '

Here, x, and Axp are, respectively, the position and the half-
width-at-half-maximum of the plasmon resonance closest to
the lowest bright exciton excitation energy in the same nano-
tube (as shown in the left panels of Fig. 4). The integral in

Eq. (16) then simplifies to the form
2 f * dxxfé(x)p(x) _F (xp)A)clz7 J * dx

7J )ci—x2 xi—xi 0 (x—x[,)2+Ax,2)
= _uF(x )Ax {arctan(—Lx >+ 7—7}
Iy Ax 21
Xy =X, »

with F(xp)=2xpl:-6(xp)p(xp)/rr. This expression is valid for
all x,, apart from those located in the narrow interval (x,
—Ax,,x,+Ax,) in the vicinity of the plasmon resonance, pro-
vided that the resonance is sharp enough. Then, the disper-
sion equation becomes the biquadratic equation for x,, with
the following two positive solutions (the dispersion curves)

of interest to us:

1.2
grtx, 15—
X1 2= \/ ) * E\"(ej%_xi)2+Fp8f' (22)

Here, F,=4F(x,)Ax,(m—Ax,/x,) with the arctan function
expanded to linear terms in Ax,/x,<1.

The dispersion curves (22) are shown in the right panels
in Figs. 4(a) and 4(b) as functions of the dimensionless
longitudinal quasimomentum. In these calculations, we

estimated the interband transition matrix element in lz-g(xp)
[Eq. (18)] from the equation d§2=3ﬁ)\3/47£f,d according to
Hanamura’s general theory of the exciton radiative decay in
spatially confined systems,®® where 725‘(‘1 is the exciton
intrinsic radiative lifetime, and A=2mc#i/E with E being the
exciton total energy given in our case by Eq. (6). For zigzag-
type CNs considered here, the first Brillouin zone
of the longitudinal quasimomentum is given by
-2ati/3b=hk,<2afi/3b.!> The total energy of the

ground-internal-state exciton can then be written as

PHYSICAL REVIEW B 80, 085407 (2009)

E=E, . +Qmh/3b)**/2M,, with —1 =t=1 representing the
dimensionless longitudinal quasimomentum. In our calcula-
tions, we used the lowest bright exciton parameters Egcl)
=121 and 100 eV, 7“=14.3 and 19.1 ps, and M,,
=0.44mg and 0.19m, (m, is the free-electron mass) for the
(11,0) CN and (10,0) CN, respectively, as reported in Ref. 35
by directly solving the Bethe-Salpeter equation.

Both graphs in the right panels in Fig. 4 are seen to dem-
onstrate a clear anticrossing behavior with the (Rabi) energy
splitting ~0.1 eV. This indicates the formation of the
strongly coupled surface-plasmon-exciton excitations in the
nanotubes under consideration. It is important to realize that
here we deal with the strong exciton-plasmon interaction
supported by an individual quasi-1D nanostructure—a
single-walled (small-diameter) semiconducting carbon nano-
tube, as opposed to the artificially fabricated metal-
semiconductor nanostructures studied previously,’’3° where
the metallic component normally carries the plasmon and the
semiconducting one carries the exciton. It is also important
that the effect comes not only from the height but also from
the width of the plasmon resonance as it is seen from the
definition of the F, factor in Eq. (22). In other words, as long
as the plasmon resonance is sharp enough (which is always
the case for interband plasmons), so that the Lorentzian ap-
proximation (21) applies, the effect is determined by the area
under the plasmon peak in the DOS function (19) rather than
by the peak height as one would expect.

However, the formation of the strongly coupled exciton-
plasmon states is only possible if the exciton total energy is
in resonance with the energy of a surface-plasmon mode.
The exciton energy can be tuned to the nearest plasmon reso-
nance in ways used for excitons in semiconductor quantum
microcavities—thermally®’-%° (by elevating sample tempera-
ture) and/or electrostatically’®’? (via the quantum confined
Stark effect with an external electrostatic field applied per-
pendicular to the CN axis). As is seen from Egs. (6) and (7),
the two possibilities influence the different degrees of free-
dom of the quasi-1D exciton—the (longitudinal) kinetic en-
ergy and the excitation energy, respectively. Below, we study
the (less trivial) electrostatic field effect on the exciton exci-
tation energy in carbon nanotubes.

B. Perpendicular electrostatic field effect

The optical properties of semiconducting CNs in an ex-
ternal electrostatic field directed along the nanotube axis
were studied theoretically in Ref. 31. Strong oscillations in
the band-to-band absorption and the quadratic Stark shift of
the exciton absorption peaks with the field increase, as well
as the strong-field dependence of the exciton ionization rate,
were predicted for CNs of different diameters and chiralities.
Here, we focus on the perpendicular electrostatic field orien-
tation. We study how the electrostatic field applied perpen-
dicular to the CN axis affects the CN band gap, the exciton
binding/excitation energy, and the interband surface-plasmon
energy to explore the tunability of the strong exciton-
plasmon coupling effect predicted above. The problem is
similar to the well-known quantum confined Stark effect first
observed for the excitons in semiconductor quantum
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wells.”%”! However, the cylindrical surface symmetry of the
excitonic states brings new peculiarities to the quantum con-
fined Stark effect in CNs. In what follows, we will generally
be interested only in the lowest internal energy (ground) ex-
citonic state and so the internal-state index f in Egs. (6) and
(7) will be omitted for brevity.

Because the nanotube is modeled by a continuous, infi-
nitely thin, anisotropically conducting cylinder in our mac-
roscopic QED approach, the actual local symmetry of the
excitonic wave function resulted from the graphene
Brillouin-zone structure is disregarded in our model (see,
e.g., reviews*>33). The local symmetry is implicitly present
in the surface axial conductivity though, which we calculate
beforehand as described above.”*

We start with the Schrodinger equation for the electron
located at r,={Rcn,¢,.2,; and the hole located at
r,={Rcn, ©;-2,; on the nanotube surface. They interact with
each other through the Coulomb potential V(r,,r;)=
—e?/er,~r1), =¢€,,(0). The external electrostatic field
F={F,0,0} is directed perpendicular to the CN axis (along
the x axis in Fig. 1). The Schrodinger equation is of the form

[I:]e(F) + I:Ih(F) + V(re»rh)]qf(re’rh) = E\P(re’rh)7 (23)

with
A () ﬁ2<1 &+ &2)_ F. (24)
. =- — + Fer,, F.
! 2m, RéN (7‘P§,h azg,h !

We further separate out the translational and relative de-
grees of freedom of the electron-hole pair by transforming
the longitudinal (along the CN axis) motion of the pair into
its  center-of-mass  coordinates given by Z=(m,z,
+myz;) /M, and z=z,—z,. The exciton wave function is ap-
proximated as follows:

\P(re’ rh) = eikzngex(z) l//e(ﬁoe) lr//h((Ph) . (25)

The complex exponential describes the exciton center-of-
mass motion with the longitudinal quasimomentum k, along
the CN axis. The function ¢,,(z) represents the longitudinal
relative motion of the electron and the hole inside the exci-
ton. The functions ¢,(¢,) and ¢,(¢,) are the electron and
hole subband wave functions, respectively, which represent
their confined motion along the circumference of the cylin-
drical nanotube surface.

Each of the functions is assumed to be normalized to
unity. Equations (23) and (24) are then rewritten in view of
Egs. (6)—(8) to yield

h? &2
|: 2m R ﬁ(p eRCNF COS(QD?)] dfe(()oe) elvl’e((lpe) 5
(26)
ﬁz
{ 2R 0 eRenl COS(‘Ph)} Un(pn) = enhn(n)
(27)
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&
|: 2 9z 2 + Veff(z):| ¢ex(z) = Eb¢ex(z) s (28)

where u=m,m;,/M,, is the exciton reduced mass and Vg is
the effective longitudinal electron-hole Coulomb interaction
potential given by

eff(z) - _f d@ef dgoh|¢e (Pe)l |wh(¢’h)|2V((Pe7 QDh,Z) (29)

with V being the original electron-hole Coulomb potential
written in the cylindrical coordinates as

1
{2 + 4R¢ sin*[(¢, — @) /211

The exciton problem is now reduced to the 1D equation (28),
where the exciton binding energy does depend on the per-
pendicular electrostatic field through the electron and hole
subband functions ¢, given by the solutions of Egs. (26)
and (27) and entering the effective electron-hole Coulomb
interaction potential (29).

The set of Egs. (26)—(30) is analyzed in Appendix D. One
of the main results obtained in there is that the effective
Coulomb potential (29) can be approximated by an attractive
cusp-type cutoff potential of the form

62

€[|Z| + ZO(j’F)] '

where the cutoff parameter z, depends on the perpendicular
electrostatic field strength and on the electron-hole azimuthal
transverse quantization index j=1,2,... (excitons are created
in interband transitions involving valence and conduction
subbands with the same quantization index>® as shown in
Fig. 2). Specifically,

V((pe’ (Ph’z) = (30)

Veff(Z) == (31)

7212 [1-A(F)]
2Ren "o [1-A(F)] (32)

ZO(i’F) =

with A;(F) given to the second-order approximation in the

electric field by

R6 2
A(F) = ZMMMTLFZ (33)
0Gi-2) 1
wi= "+ 2
' 1-27 1+2j

where 6(x) is the unit step function. Approximation (31) is
formally valid when z,(j,F) is much less than the exciton
Bohr radius aj(=€A?/ ue?) which is estimated to be ~10Ry
for the first (j=1 in our notations here) exciton in CNs.!7 As
is seen from Egs. (32) and (33), this is always the case for
the first exciton for those fields where the perturbation theory
applies, i.e., when A;(F)<1 in Eq. (33).

Equation (28) with the potential (31) formally coincides
with the one studied by Ogawa and Takagahara in their treat-
ments of excitonic effects in 1D semiconductors with no ex-
ternal electrostatic field applied.”® The only difference in our
case is that our cutoff parameter (32) is field dependent. We
therefore follow Ref. 76 and find the ground-state binding
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FIG. 5. (Color online) (a) Calculated binding energies of the
first bright exciton in the (11,0) and (10,0) CNs as functions of the
perpendicular electrostatic field applied. Solid lines are the numeri-
cal solutions to Eq. (34), dashed lines are the quadratic approxima-
tions as given by Eq. (35). (b) Field dependence of the effective
cutoff Coulomb potential (31) in the (11,0) CN. The dimensionless
energy is defined as [Energy]/27y,, according to Eq. (17).

energy E;fl) for the first exciton we are interested in here
from the transcendental equation

2z0(LF) ——mn| | 1 £

In| ——V2u|E +-\ — =0 34

[ o V2l |+ Ry (34)

In doing so, we first find the exciton Rydberg energy,
Ry* (=ue*/2h%€%), from this equation at F=0. We use the
diameter- and chirality-dependent electron and hole effective
masses from Ref. 77, and the first bright exciton binding
energy of 0.76 eV for both (11,0) and (10,0) CN as reported
in Ref. 19 from ab initio calculations. We obtain Ry*=4.02
and 0.57 eV for the (11,0) tube and (10,0) tube, respectively.
The difference of about 1 order of magnitude reflects the fact
that these are the semiconducting CNs of different types—
type-I and type-Il, respectively—based on (2n+m)
families.”” The parameters Ry* thus obtained are then used to
find |E§)“) as functions of F by numerically solving Eq. (34)
with zy(1,F) given by Egs. (32) and (33).

The calculated (negative) binding energies are shown by
the solid lines in Fig. 5(a). Also shown there by dashed lines
are the functions

EYV(F) ~ BV - A (P)]. (35)

with A, (F) given by Eq. (33). They are seen to be fairly good
analytical (quadratic in field) approximations to the numeri-
cal solutions of Eq. (34) in the range of not too large fields.
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The exciton binding energy decreases very rapidly in its ab-
solute value as the field increases. Fields of only
~0.1-0.2 V/um are required to decrease |E{'"| by a factor
of ~2 for the CNs considered here. The reason is the per-
pendicular field shifts up the “bottom” of the effective poten-
tial (31) as shown in Fig. 5(b) for the (11,0) CN. This makes
the potential shallower and pushes bound excitonic levels up,
thereby decreasing the exciton binding energy in its absolute
value. As this takes place, the shape of the potential does not
change and the longitudinal relative electron-hole motion re-
mains finite at all times. As a consequence, no tunnel exciton
ionization occurs in the perpendicular field, as opposed to the
longitudinal electrostatic field (Franz-Keldysh) effect studied
in Ref. 31 where the nonzero field creates the potential bar-
rier separating out the regions of finite and infinite relative
motions and the exciton becomes ionized as the electron tun-
nels to infinity.

The binding energy is only the part of the exciton excita-
tion energy (7). Another part comes from the band-gap en-
ergy (8), where &, and g, are given by the solutions of Egs.
(26) and (27), respectively. Solving them to the leading (sec-
ond) order perturbation-theory approximation in the field
(Appendix D), one obtains

2M, P w;  2M,j*w;

EV(F) = ng{l - } (36)
where the electron and hole subband shifts are written sepa-
rately. This, in view of Eq. (33), yields the first band-gap
field dependence in the form

E;”)(F)zEfg”)[l—%Al(F)} (37)

The band gap decrease with the field in Eq. (37) is stronger
than the opposite effect in the negative exciton binding en-
ergy given (to the same order approximation in field) by Eq.
(35). Thus, the first exciton excitation energy (7) will be
gradually decreasing as the perpendicular field increases,
shifting the exciton absorption peak to the red. This is the
basic feature of the quantum confined Stark effect observed
previously in semiconductor nanomaterials.”®’3 The field de-
pendences of the higher interband transitions exciton excita-
tion energies are suppressed by the rapidly (quadratically)
increasing azimuthal quantization numbers in the denomina-
tors of Egs. (33) and (36).

Lastly, the perpendicular field dependence of the inter-
band plasmon resonances can be obtained from the fre-
quency dependence of the axial surface conductivity due to
excitons (see Ref. 53 and references therein). One has

- ihwfj
T , 38
]g [EWDTP — (hw)? - 2ih’wl T (38)

exc

oz (@) ~

where f; and 7 are the exciton oscillator strength and relax-
ation time, respectively. The plasmon frequencies are those
at which the function Re[1/0%(w)] has maxima. Testing it
for maximum in the domain Eil) < ﬁw<Eg%,), one finds the
first-interband plasmon resonance energy to be (in the limit
T— )
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FIG. 6. (Color online) [(a) and (b)] Calculated dependences of
the first bright exciton parameters in the (11,0) and (10,0) CNs,
respectively, on the electrostatic field applied perpendicular to the
nanotube axis. The dimensionless energy is defined as

[Energy]/2y,, according to Eq. (17). The energy is measured from
the top of the first unperturbed hole subband.

[EQDP 4 [ECYP
e T

(1) _
E)V= (39)

Using the field dependent E'!!) given by Egs. (7), (35), and
(37) and neglecting the field dependence of E?, one obtains
g g p exc

to the second-order approximation in the field

1+E1p gD
_ T8 T Texc

1+ E®) E(ﬁ; A(F )}' (40)

exc exc

(11) __ p(11)
ESV(F) ~ E| [1

Figure 6 shows the results of our calculations of the field
dependences for the first bright exciton parameters in the
(11,0) and (10,0) CNs. The energy is measured from the top
of the first unperturbed hole subband (as shown in Fig. 2,
right panel). The binding-energy field dependence was cal-
culated numerically from Eq. (34) as described above
[shown in Fig. 5(a)]. The band-gap field dependence and the
plasmon energy field dependence were calculated from Egs.
(36) and (40), respectively. The zero-field excitation energies
and zero-field binding energies were taken to be those re-
ported in Refs. 35 and 19, respectively, and we used the
diameter- and chirality-dependent electron and hole effective
masses from Ref. 77. As is seen in Figs. 6(a) and 6(b), the
exciton excitation energy and the interband plasmon energy
experience redshift in both nanotubes as the field increases.
However, the excitation energy red shift is very small (barely
seen in the figures) due to the negative field-dependent con-
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tribution from the exciton binding energy. So, E\L)(F) and
E;ll)(F ) approach each other as the field increases, thereby
bringing the total exciton energy (6) in resonance with the
surface-plasmon mode due to the nonzero longitudinal
kinetic-energy term at finite temperature.”® Thus, the electro-
static field applied perpendicular to the CN axis (the quan-
tum confined Stark effect) may be used to tune the exciton
energy to the nearest interband plasmon resonance to put the
exciton-surface-plasmon interaction in small-diameter semi-
conducting CNs to the strong-coupling regime.

C. Optical absorption

Here, we analyze the longitudinal exciton absorption line
shape as its energy is tuned to the nearest interband surface-
plasmon resonance. Only longitudinal excitons (excited by
light polarized along the CN axis) couple to the surface-
plasmon modes as discussed at the very beginning of this
section (see Ref. 56 for the perpendicular light exciton ab-
sorption in CNs). We follow the optical absorption-emission
line shape theory developed recently for atomically doped
CNs.8 (Obviously, the absorption line shape coincides with
the emission line shape if the monochromatic incident light
beam is used in the absorption experiment.) When the
f-internal state exciton is excited and the nanotube’s surface
EM field subsystem is in vacuum state, the time-dependent
wave function of the whole system “exciton+field” is of the
form’

[0y = 2 Coll, e ER ML (K)}, {0}
k.f

+2J doC(k, w,0)e” {0}, [{1(k, 0)}).
k Y0

(41)

Here, [{1/k)})., is the excited single-quantum Fock state
with one exciton and |{1(k,®)}) is that with one surface
photon. The vacuum states are |{0}),, and |{0}) for the exci-
ton subsystem and field subsystem, respectively. The coeffi-
cients Cy(k,?) and C(k,w,) stand for the population prob-
ability amplitudes of the respective states of the whole

system. The exciton energy is of the form Ef(k)=Ef(k)
—ifi/ 7, with E/(k) given by Eq. (6) and 7 being the phenom-
enological exciton relaxation-time constant [assumed to be
such that 72/ T<E(k)] to account for other possible exciton
relaxation processes. From the literature, we have
7,,~30-100 fs for the exciton-phonon scattering,’!
7,~50 ps for the exciton scattering by defects,>*?® and
Toaa~ 10 ps—10 ns for the radiative decay of excitons.®
Thus, the scattering by phonons is the most likely exciton
relaxation mechanism.

We transform the total Hamiltonian (1)—(10) to the k rep-
resentation using Egs. (5) and (9) (see Appendix A) and ap-
ply it to the wave function in Eq. (41). We obtain the follow-
ing set of the two simultaneous differential equations for the
coefficients C(k,?) and C(k,w,?) from the time-dependent
Schrodinger equation:

085407-8



STRONG EXCITON-PLASMON COUPLING IN...

. . i = A
Cok,)e E0 = — 52 dog(kk',0)C(k', w,1)e,
k' 70 ‘

(42)

CK' @, Ser = = éE (e, K, ) "k, 1)e .
f

(43)

The & symbol on the left in Eq. (43) ensures that the momen-
tum conservation is fulfilled in the exciton-photon transi-
tions, so that the annihilating exciton creates the surface pho-
ton with the same momentum and vice versa. In terms of the
probability amplitudes above, the exciton emission intensity
distribution is given by the final-state probability at very long
times corresponding to the complete decay of all initially
excited excitons

I(w) = |C(k, w,t — »)|?

o0 2
f dt' Cf(k, ¢ )e—i[éf_(k)—ﬁw]r//h )
0

1
f
(44)

Here, the second equation is obtained by the formal integra-
tion of Eq. (43) over time under the initial condition
C(k,,0)=0. The emission intensity distribution is thus re-
lated to the exciton population probability amplitude C/k,?)
to be found from Eq. (42).

The set of simultaneous equations (42) and (43) [and Eq.
(44), respectively] contains no approximations except the
(commonly used) neglect of many-particle excitations in the
wave function (41). We now apply these equations to the
exciton-surface-plasmon system in small-diameter semicon-
ducting CNs. The interaction matrix element in Egs. (42) and
(43) is then given by the k transform of Eq. (13) and has the
following property (Appendix C):

1
— g™ (k.k,0)[?= —T} 45
Ll (kk )| = ——To(x)p(x), (45)

with I_‘(’;(x) and p(x) given by Egs. (18) and (19), respectively.
We further substitute the result of the formal integration of
Eq. (43) [with C(k,®,0)=0] into Eq. (42), use Eq. (45) with
p(x) approximated by the Lorentzian (21), calculate the inte-
gral over frequency analytically, and differentiate the result
over time to obtain the following second-order ordinary dif-
ferential equation for the exciton probability amplitude [di-
mensionless variables, Eq. (17)]

Cf(ﬁ) + [Axp - Asf"' i('xp - Sf)]cf(ﬂ) + (Xf/z)ch(ﬂ) =0,

where Xf=[2Axpff(xp)]“2 with ff(xp)=f£(xp)p(xp), Ag;
=h/2vyy1, B=27pt/h is the dimensionless time, and the k
dependence is omitted for brevity. When the total exciton
energy is close to a plasmon resonance, &,~x,, the solution
of this equation is easily found to be
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! ox 2 2
c (B) = —(1 + —)e—(éx—\& -X7)BI2
R RN

1 ( Sx ) e
+—|1=- e—(5x+\e Ox —Xf),B/Z (46)

[e2 2 ’
2 Vox© — X;

where &x=Ax,—Ae;>0 and X,=[2Ax,[(e)]"2. This
solution is valid when &,~x, regardless of the strength of
the exciton-surface-plasmon coupling. It yields the ex-
ponential decay of the excitons into plasmons, |C/(B)|*

~exp[-T AepB], in the weak-coupling regime where the
coupling parameter (X;/x)*<1. If, on the other hand,
(Xy/ &x)?> 1, then the strong-coupling regime occurs and the
decay of the excitons into plasmons proceeds via damped
Rabi oscillations, |CAB)* = exp(-dxB)cos*(X;B/2). This is
very similar to what was earlier reported for an excited two-
level atom near the nanotube surface.*®-*2%5 Note, however,
that here we have the exciton-phonon scattering as well,
which facilitates the strong exciton-plasmon coupling by de-
creasing dx in the coupling parameter. In other words, the
phonon scattering broadens the (longitudinal) exciton mo-
mentum distribution,®' thus effectively increasing the frac-
tion of the excitons with g,~x,,.

In view of Egs. (45) and (46), the exciton emission inten-
sity (44) in the vicinity of the plasmon resonance takes the
following (dimensionless) form:

2
. (47)

I(x) = Io(e) 2 | f dBC/(B)e’errideph
f 0

where 1(x)=27y,/(w)/% and fosz(sf)/Zw. After some alge-
bra, this results in

7o) ~ io(sf)[(x - sf)2 + Axi]
Y =8 - XUAT + (x— £ XA+ As)’

(48)

where Axﬁ>As;. The summation sign over the exciton in-
ternal states is omitted since only one internal state contrib-
utes to the emission intensity in the vicinity of the sharp
plasmon resonance.

The line shape in Eq. (48) is mainly determined by the
coupling parameter (X,/ Axp)z. It is clearly seen to be of a
symmetric two-peak structure in the strong-coupling regime
where (Xf/ Ax[,)2> 1. Testing it for extremum, we obtain the
peak frequencies to be

X Ax,\*  [Ax,\?
X1’2=8fi _2'[\/\/14'8(7)62) —4<7x£) N
f f

[terms ~(Axp)2(Asf)2/ X? are neglected] with the Rabi split-
ting x;—x,=X; In the weak-coupling regime where
(Xy/ Ax,,)2< 1, the frequencies x; and x, become complex,
indicating that there are no longer peaks at these frequencies.
As this takes place, Eq. (48) is approximated with the weak-

coupling condition, the fact that x~ &, and X%:ZAxpff(sf),
to yield the Lorentzian '
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FIG. 7. (Color online) [(a) and (b)] Exciton absorption-emission
line shapes as the exciton energies are tuned to the nearest plasmon
resonance energies (vertical dashed lines in here; see Fig. 3 and left
panels in Fig. 4) in the (11,0) and (10,0) nanotubes, respectively.
The dimensionless energy is defined as [Energy]/27y, according to
Eq. (17).

To(Sf)/[l + (ASf/Axp)z]
(x— gf)2 + [ff(sf)/Z\e‘JI + (Asf/Axp)2]2

I(x) =

peaked at X=gp whose half width at half maximum is

slightly narrower, however, than ff(sf)/ 2 it should be if the
exciton-plasmon relaxation were the only relaxation mecha-
nism in the system. The reason is that the competing phonon
scattering takes excitons out of resonance with plasmons,
thus decreasing the exciton-plasmon relaxation rate. We
therefore conclude that the phonon scattering does not affect
the exciton emission-absorption line shape when the exciton-
plasmon coupling is strong (it facilitates the strong-coupling
regime to occur, however, as was noticed above) and it nar-
rows the (Lorentzian) emission-absorption line when the
exciton-plasmon coupling is weak.

Calculated exciton emission-absorption line shapes, as
given by Eq. (48) for the CNs under consideration, are
shown in Figs. 7(a) and 7(b). The exciton energies are as-
sumed to be tuned, e.g., by means of the quantum confined
Stark effect discussed in Sec. III B, to the nearest plasmon
resonances (shown by the vertical dashed lines in the figure).
We used 7,,=30 fs as reported in Ref. 27. The line (Rabi)
splitting effect is seen to be ~0.1 eV, indicating the strong
exciton-plasmon coupling with the formation of the mixed
surface plasmon-exciton excitations. The splitting is larger in

PHYSICAL REVIEW B 80, 085407 (2009)

the smaller-diameter nanotubes and is not masked by the
exciton-phonon scattering.

IV. CONCLUSIONS

We have shown that the strong exciton-surface-plasmon
coupling effect with characteristic exciton absorption line
(Rabi) splitting ~0.1 eV exists in small-diameter (<1 nm)
semiconducting CNs. The splitting is almost as large as the
typical exciton binding energies in such CNs [~0.3-0.8 eV
(Refs. 17-19 and 22)] and of the same order of magnitude as
the exciton-plasmon Rabi splitting in organic semiconductors
[~180 meV (Ref. 37)]. It is much larger than the exciton-
polariton Rabi splitting in semiconductor microcavities
[~140-400 weV (Refs. 67-69)] or the exciton-plasmon
Rabi splitting in hybrid semiconductor-metal nanoparticle
molecules.?®

Since the formation of the strongly coupled mixed
exciton-plasmon excitations is only possible if the exciton
total energy is in resonance with the energy of an interband
surface plasmon mode, we have analyzed possible ways to
tune the exciton energy to the nearest surface plasmon reso-
nance. Specifically, the exciton energy may be tuned to the
nearest plasmon resonance in ways used for the excitons in
semiconductor quantum microcavities—thermally®’=% (by
elevating sample temperature) and/or electrostatically’®~"
(via the quantum confined Stark effect with an external elec-
trostatic field applied perpendicular to the CN axis). The two
possibilities influence the different degrees of freedom of the
quasi-1D exciton—the (longitudinal) kinetic energy and the
excitation energy, respectively.

We have studied how the perpendicular electrostatic field
affects the exciton excitation energy and interband plasmon
resonance energy (the quantum confined Stark effect). Both
of them are shown to shift to the red due to the decrease in
the CN band gap as the field increases. However, the exciton
redshift is much less than the plasmon one because of the
decrease in the absolute value of the negative binding energy,
which contributes largely to the exciton excitation energy.
The exciton excitation energy and interband plasmon energy
approach as the field increases, thereby bringing the total
exciton energy in resonance with the plasmon mode due to
the nonzero longitudinal kinetic-energy term at finite tem-
perature.

Lastly, the noteworthy message we would like to deliver
in this paper is that the strong exciton-surface-plasmon cou-
pling we predict here occurs in an individual CN as opposed
to various artificially fabricated hybrid plasmonic nanostruc-
tures mentioned above. We strongly believe this phenom-
enon, along with its tunability feature via the quantum con-
fined Stark effect we have demonstrated, opens up new paths
for the development of CN-based tunable optoelectronic de-
vice applications in areas such as nanophotonics, nanoplas-
monics, and cavity QED. One straightforward application
like this is the CN photoluminescence control by means of
the exciton-plasmon coupling tuned electrostatically via the
quantum confined Stark effect. This complements the
microcavity-controlled CN infrared emitter application re-
ported recently,?® offering the advantage of less stringent fab-
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rication requirements at the same time since the planar pho-
tonic microcavity is no longer required. Electrostatically
controlled coupling of two spatially separated (weakly local-
ized) excitons to the same nanotube’s plasmon resonance
would result in their entanglement,””!' the phenomenon that
paves the way for CN-based solid-state quantum information
applications. Moreover, CNs combine advantages such as
electrical conductivity, chemical stability, and high surface
area that make them excellent potential candidates for a va-
riety of more practical applications, including efficient solar
energy conversion,” energy storage,’> and optical
nanobiosensorics.?® However, the photoluminescence quan-
tum yield of individual CNs is relatively low and this hinders
their uses in the aforementioned applications. CN bundles
and films are proposed to be used to surpass the poor perfor-
mance of individual tubes. The theory of the exciton-
plasmon coupling we have developed here, being extended
to include the intertube interaction, complements currently
available “weak-coupling” theories of the exciton-plasmon
interactions in low-dimensional nanostructures®*37 with the
very important case of the strong-coupling regime. Such an
extended theory (subject of our future publication) will lay
the foundation for understanding intertube energy-transfer
mechanisms that affect the efficiency of optoelectronic de-
vices made of CN bundles and films, as well as it will shed
more light on the recent photoluminescence experiments
with CN bundles®®# and multiwalled CNs,”° revealing their
potentialities for the development of high-yield, high-
performance optoelectronics applications with CNs.
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APPENDIX A: EXCITON INTERACTION WITH THE
SURFACE ELECTROMAGNETIC FIELD

We follow our recently developed QED formalism to de-
scribe vacuum-type EM effects in the presence of quasi-1D
absorbing and dispersive bodies.*>*> The treatment begins
with the most general EM interaction of the surface charge
fluctuations with the quantized surface EM field of a single-
walled CN. No external field is assumed to be applied. The
CN is modeled by a neutral, infinitely long, infinitely thin,
anisotropically conducting cylinder. Only the axial conduc-
tivity of the CN, o, is taken into account, whereas the azi-
muthal one, o, is neglected being strongly suppressed by
the transverse depolarization effect.**->* Since the problem
has the cylindrical symmetry, the orthonormal cylindrical ba-
sis {e,,e,,e.} is used with the vector e, directed along the
nanotube axis as shown in Fig. 1. The interaction has the
following form (Gaussian system of units):
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ﬁmzﬁw+ﬁ@-_zihAm+w»{ﬁ>

int int = n
ni Mi¢

qdi ¢ A(i A~ Ai
- ZA(H + rf,))} + 2 qi¢m+ ), (A1)

n,i

where c is the speed of light, m;, g;, fff), and f)g) are, respec-
tively, the masses, charges, coordinate operators, and mo-
menta operators of the particles (electrons and nucleus) re-
siding at the lattice site n=R,={R¢y, ¢,,z,} associated with
a carbon atom (see Fig. 1) on the surface of the CN of radius
Rcn. The summation is taken over the lattice sites and may

be substituted with the integration over the CN surface using
Eq. (3). The vector potential operator A and the scalar po-
tential operator ¢ represent the nanotube’s transversely po-
larized and longitudinally polarized surface EM modes, re-
spectively. They are written in the Schrodinger picture as
follows:

An) = f do—E*(n,0)+He., (A2)
0 o

-V,é(n) = f”’ dwE”(n, w)+ H.c. (A3)
0

We use the Coulomb gauge whereby V,,-A(n)=0 or, equiva-
lently, [p, A(n+#)]=0.

The total electric field operator of the CN-modified EM
field is given for an arbitrary r in the Schrodinger picture by

E(r) = f dwE(r, w)+H.c.
0

= f i do[E*(r,0) +E(r,0)]+Hc.,  (A4)

0

with the transversely (longitudinally) polarized Fourier-

domain field components defined as
E“an=de$W@—w»Eauw, (AS)

where

1
I — —_—
Buplr) == V.V —.

S5(r) = 8,50(r) — S4(r) (A6)

are the longitudinal and transverse dyadic J-functions, re-
spectively. The total field operator (A4) satisfies the set of
the Fourier-domain Maxwell equations

V X E(r,0) = - ikH(r, ), (A7)

~ ~ 497 A
V X H(r,0) = — ikB(r,0) + —1(r0),  (A8)
C

where H=(ik)"'V XE is the magnetic field operator,
k=w/c, and
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I(r,0)= X 8(r-n)J(n,o) (A9)

is the exterior current operator with the current density de-
fined as follows:

\/ﬁw Re UZZ(RCN’ (1)) ~
w

Jn,o) = fn,w)e,,  (A10)
to ensure preservation of the fundamental QED equal-time
commutation relations (see, e.g., Ref. 46) for the EM field

components in the presence of a CN. Here, o, is the CN
surface axial conductivity per unit length, and f”(n,w) along

with its counterpart ﬁ (n, ) are the scalar bosonic field op-
erators which annihilate and create, respectively, single-
quantum EM field excitations of frequency w at the lattice
site n of the CN surface. They satisfy the standard bosonic
commutation relations

[(n,0).f (m,0")] = dymdlw = o),
[f(n,),f(m, )] =[f"(n,0),f"(m,e)]=0. (A1)
One further obtains from Eqs. (A7)~(A10) that
Er0)= k"3 Grnw) e (A12
and, according to Eqs. (A4) and (A5),
B0 0) = k"3 G - ine), (A1)

n

where *G and 'G are the transverse part and the longitudinal
part, respectively, of the total Green’s tensor G="G+'G of
the classical EM field in the presence of the CN. This tensor
satisfies the equation

D (VX VX =k?),4Go(rm,w) = 8r—n),

a=r,Q,2

(A14)

together with the radiation conditions at infinity and the
boundary conditions on the CN surface.

All the “discrete” quantities in Egs. (A9)—(A14) may be
equivalently rewritten in continuous variables in view of Eq.
(3). Being applied to the identity 1=2,5,m» Eq. (3) yields

5nm=S05(Rn_Rm)~ (A15)
This requires redefining
fn,0) =5, fR,,0), fi(n0)=\Sof(R,0)  (Al6)

in the commutation relations (Al1). Similarly, from Egq.
(A12), in view of Egs. (3), (A10), and (A16), one obtains

G(r,n,0) = \S,G(r,R,,0), (A17)

which is also valid for the transverse and longitudinal
Green’s tensors in Eq. (A13).
Next, we make the series expansions of the interactions

A and A% in Eq. (A1) about the lattice site n to the first

nt int
nonvanishing terms
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Al ~-3 4 —“=Am)-py + E Az(n) (A18)
n, i L i
Hij = 2 ai¥u(n) - £, (A19)
and introduce the single-lattice-site Hamiltonian
H, = £0|0X0] + (A20)
with the completeness relation
(A21)

0)0] + X [Xfl =
f

Here, €, is the energy of the ground state |0) (no exciton
excited) of the carbon atom associated with the lattice site n
and gp+fiw; is the energy of the excited carbon atom in the
quantum state | /) with one f-internal-state exciton formed of
the energy E =N, In view of Egs. (A20) and (A21), one

has
oA m, M) fr ] = I[A(z) A
= =—I|r
pn l dt lh n
~—E o OEL|NB, — (EVI0)BY ) (A22)
and

£ = 1] ~ 2 (O 1F)By s+ (FIED|0)B] ). (A23)
where (0[¢\[f)= <ﬂf'(’)|0> in view of the Hermitian and real
character of the coordinate operator. The operators B, ;

=[0)(f| and Bf ;=|f)(0| create and annihilate, respectively,
the f-internal-state exciton at the lattice site n, and exciton-
to-exciton transitions are neglected. In addition, we also have

[( e (B2 61, (A24)
where «,B=r,¢,z. Substituting these into Egs. (A18) and
(A19) [commutator (A24) goes into the second term of Eq.
(A18) which is to be pretransformed as follows:

2ij.apdi CIJA (D)Aﬁ(n) 8ap/2mic?], one arrives at the fol-
lowing (electric- dlpole) appr0x1mat10n of Eq. (Al):

=A"+ g2 = E—Cfdf A(n)[ v~ Buy

int — *int int

H

+h—df A(n)}+2df V.ém)(B] ;+Bny)  (A25)

n.f

with @/ =(0|d,|f)=(f1d,|0), where d,=3,4;" is the total
electric-dipole moment operator of the particles residing at
the lattice site n.

The Hamiltonian (A25) is seen to describe the vacuum-
type exciton interaction with the surface EM field (created by
the charge fluctuations on the nanotube surface). The last
term in the square brackets does not depend on the exciton
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operators and therefore results in the constant energy shift
which can be safely neglected. We then arrive, after using
Egs. (A2), (A3), (A10), and (A13), at the following second-
quantized interaction Hamiltonian:

Hy=2 | do[gf’(nmw)Bj,

nm,f Y0
— g (n,m,w)B, ]f(m,w) +He.,  (A26)
where
+ w
g (nm,w) =g} (n,m,w) * ;g}(n,m,w), (A27)
f
with
)
gfw)(n,m,w) =- i?f\/ﬂ'ﬁw Re 0..(Ren, )
x > (@), "G,(n,m,w) (A28)
a=r,p,z
and

L(”)Gaz(n,m,m) = f drﬁig‘)(n— r)Gg.(r,m,w).

(A29)

This yields Egs. (10)—(12) after the strong transverse
depolarization effect in CNs is taken into account whereby
d/~(d)).e..

APPENDIX B: GREEN’S TENSOR OF THE SURFACE
ELECTROMAGNETIC FIELD

Within the model of an infinitely thin, infinitely long, an-
isotropically conducting cylinder we utilize here, the classi-
cal EM field Green’s tensor is found by expanding the solu-
tion to the Green’s equation (A14) in series in cylindrical
coordinates and then imposing the appropriately chosen
boundary conditions on the CN surface to determine the
Wronskian normalization constant (see, e.g., Ref. 82).

After the EM field is divided into the transversely and
longitudinally polarized components according to Eqgs.
(A4)—(A6), the Green’s equation (A14) takes the form

[

PHYSICAL REVIEW B 80, 085407 (2009)

> (VX VX =k, [1GCo(rn,0) +'G, (rn, )]

a=r,p,Z

=48(r-n), (B1)

with the two additional constraints
> Vo lG(rnw=0 (B2)

a=r,p,z
and
2 faﬁ.yVB ”Gyz(r,n, (1)) = 0, (B3)
By=r.ez

where €,g, is the totally antisymmetric unit tensor of rank 3.

Equations (B2) and (B3) originate from the divergence-less
character (Coulomb gauge) of the transverse EM component
and the curl-less character of the longitudinal EM compo-
nent, respectively. The transverse =G, and longitudinal ”GD(Z
Green’s tensor components are defined by Eq. (A29) which
is the corollary of Eq. (A5) using the Egs. (A12) and (A13).
Equation (B1) is further rewritten in view of Egs. (B2) and
(B3) to give the following two independent equations for
+G,, and 'G,, we need:

(A+k)* G (r,n,0)=— 5;(r -n), (B4)

K'G_(rn,0) ==& (r-n), (B5)

with the transverse and longitudinal delta-functions defined
by Eq. (A6).

We use the differential representations for the transverse
+G,, and longitudinal 'G,, Green’s functions of the following
form [consistent with Eq. (A29)]:

1
lGzz(r,n, w) = (pVZVZ + l)g(r,n, w), (B6)
I 1
Gzz(r7n9 w) == pvzvz g(r»n’ (1)) ’ (B7)

where g(r,n,w) is the scalar Green’s function of the Helm-
holtz Eq. (B4), satisfying the radiation condition at infinity
and the finiteness condition on the axis of the cylinder. Such
a function is known to be given by the following series
expansion:

\"Eo okIr-R,| \,S:
rn,e)=— = eip("o_“’")f dhl (vr)K (VRN €™ r < Ren, B8
g( ) 477 |r _ Rn| (2’7T)2p:2_m c p( ) p( CN) CN ( )

where /, and K), are the modified cylindric Bessel functions,

v=v(h,w)=Vh>—k?, and we used the property (A17) to go
from the discrete variable n to the corresponding continuous

variable. The integration contour C goes along the real axis

of the complex plane and envelopes the branch points =k of
the integrand from below and from above, respectively. For
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r=Rey, the function g(r,n, w) is obtained from Eq. (B8) by
means of a simple symbol replacement /,« K, in the inte-
grand.

The scalar function (B8) is to be imposed the boundary
conditions on the CN surface. To derive them, we represent
the classical electric and magnetic field components in terms
of the EM field Green’s tensor as follows:

E(r,0) =ik G, (r,n,o0), (B9)

ﬂa(r,w)=—i S e Vs Eyrw).  (BIO)

B.y=r.e.z

These are valid for r # n under the Coulomb-gauge condi-
tion. The boundary conditions are then obtained from the
standard requirements that the tangential electric field com-
ponents be continuous across the surface and the tangential
magnetic field components be discontinuous by an amount
proportional to the free surface current density, which we
approximate here by the (strongest) axial component,
0..(Ren,w), of the nanotube’s surface conductivity. Under
this approximation, one has

El,-E| =E]|,-EJ =0, (B11)
HJ|.-H]| =0, (B12)

4
Hl, = Hyl =~ 0@ Edlgc (B13)

where * stand for r=Rcy = & with the positive infinitesimal
e. In view of Egs. (B9), (B10), and (B6), the boundary con-
ditions above result in the following two boundary condi-
tions for the function (BS):

gli—gl-=0, (B14)

98
ar

%
+ or

__4mio(w) (ﬁ

2
822 +k >g|RCN.

(B15)

w

We see that Eq. (B14) is satisfied identically. Equation (B15)
yields the Wronskian of modified Bessel functions on the
left, W[I,(x),K,(x)] =Ip(x)Kl’)(x) —Kp(x)I;(x) =-1/x, which
brings us to the equation

-+ 1 + p !
g](c*)(k,k', w) = ;/E g}*)(n,m,w)e_’k'““k ‘m

n,m
N ioVTho Re o..(w) d. 5 Ren (27
= + —y —_—
2mco(wRey N 0 NS% 0

PHYSICAL REVIEW B 80, 085407 (2009)

L MUZIP(URCN)KP(URCN). (B16)
RCN w

This is nothing but the dispersion relation which determines
the radial-wave numbers, A, of the CN surface EM modes
with given p and w. Since we are interested here in the EM
field Green’s tensor on the CN surface [see Eq. (A28)],
not in particular surface EM modes, we substitute
I,(RcN)K,(VRcy) from Eq. (B16) into Eq. (B8) with
r=Rcy. This allows us to obtain the scalar Green’s function
of interest with the boundary conditions (B14) and (B15)
taken into account. We have

) P
87 R K -n*’
(Tzz(w) CN J¢

gRn,w)=- (B17)

where R={Rcy,¢,z} is an arbitrary point of the cylindrical
surface. Using further the residue theorem to calculate the
contour integral, we arrive at the final expression of the form

_
c\Sydle - ¢,)

g(R,n,w) =~ elol=mle  (B18)
8mo..(w)Ren
which yields
‘G (Rn,0) =0, (B19)
'G_.(R.n,0) = g(R,n,w), (B20)

in view of Egs. (B6) and (B7).

The fact that the transverse Green’s function (B19) iden-
tically equals zero on the CN surface is related to the absence
of the skin layer in the model of the infinitely thin cylinder
(see, e.g., Ref. 82). In this model, the transverse Green’s
function is only nonzero in the near-surface area where the
exciton wave function goes to zero. Thus, only longitudinally
polarized EM modes with the Green’s function (B20) con-
tribute to the exciton-surface EM field interaction on the
nanotube surface.

APPENDIX C: DIAGONALIZATION OF THE
HAMILTONIAN (1)-(13)

We start with the transformation of the total Hamiltonian
(1)—(13) to the k representation using Egs. (5) and (9). The
unperturbed part presents no difficulties. Special care should
be given to the interaction matrix element g(i>(n,m,w) in
Eq. (13). In view of Egs. (B20), (B18), and (3), one has
explicitly

(e
. o . s 1
de,de, (@, — @,)e  eorteon f dz, dz,, e e wnlieikeaytik 2y,
—00

(C1)
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where we have also taken into account the fact that the

dipole matrix element (d/),=(0|(d,).lf) is actually the
same for all the lattice sites on the CN surface in view of
their equivalence. As a consequence, (d{,)zzd’;/ N with
f=2n<0|(dn)z|f>-
The integral over ¢ in Eq. (C1) is taken in a standard way
to yield

2
f d@,d @, 8@, — @) e ootk = 2w pr. (C2)
@

0

The integration over z is performed by first writing the inte-
gral in the form

PHYSICAL REVIEW B 80, 085407 (2009)

% L2 L2
f dz,dz,, .= lim f dsz dz,, -
% L—=J_112 -L2
(L being the CN length), then dividing it into two parts by
means of the equation
elnminle = g(z, - z,) el 4 gz, - z,)e G,

and finally by taking simple exponential integrals with al-
lowance made for the formula

2 sin[L(k, — k})/2]
5]( k= lim B
T L—w L(kz - kz)

After some simple algebra, we obtain the result

* . I 2iwl/c
dzndzmezwk,,—zm\/c—zkzz,,ﬂkzzm —limI[XN]-——"" s C3
f e L LK - (wlc)?] ) (€3)
In view of Egs. (C2) and (C3), the function (C1) takes the form
N % ;
(+) ;o zwd 'NSohw Re o, (w) 2iw/c
8r (ksk ,(1)) - imjy1- 5]( ’ (C4)
/ Qmco@Rey  Low| L= (wlc)?] ] ™
|
We have taken into account here that & A 5k K= Ok’ as well wd’; NE oho Re[1/0,(w)]
as the fact that (RenL/NSp)*= l/(27T)2 This ‘can be further Dyw) = (2m)2%R
simplified by noticing that only absolute value squared of the N
interaction matrix element matters in calculations of observ- melk.|
ables. We then have X1+ 5 [8lw+ck,) + 8w = ck,)].
2iw/c 2 o o (C8)
T2 2 il
L[k: — (w/c)”] u U +a

with u=(ck,/w)?>~1, and @=(2¢/Lw)* being the small pa-
rameter which tends to zero as L— 0. Using further the for-
mula (see, e.g., Ref. 60)

and the basic properties of the S-function, we arrive at
2

_ 2iw/c 77c| k|
lim (1 - —5———| =1+——[dw+ck,)
L Llk; — (w/c)?]
+ 8w —ck,)]. (C5)
We also have
VRe o, (w) 1
=Re . (C6)
o..(w) o (w)

Equation (C4), in view of Egs. (C5) and (C6), is rewritten

effectively as follows:
g (k k', w) = * iD{w) 3. ()]

with

In terms of the simplified interaction matrix element (C7),
the k representation of the Hamiltonian (1)-(13) takes the
following (symmetrized) form:

H=22 Hy,

22 (C9)

where

I:Ik = 2 Ef(k) (Bli,ka,f-i- Bjk,fB—k,f)
f
+ f i doholf (k,w)f(k, o)+ f(-k w)f(- k,0)]
0

+2 f dwiD{w)(B} s+ B_y Jf(k,0) - /(- k, )]
f 7o

+H.c., (C10)

with D{w) given by Eq. (C8). To diagonalize this Hamil-
tonian, we follow Bogoliubov’s canonical transformation
technique (see, e.g., Ref. 60). The canonical transformation
of the exciton and photon operators is of the form
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Biy= 2 [u,(k.0)E,(K) +v,(k w)é (- k)],

n=1,2
(C11)

2 [k w)é, (k) + v (k0 (- k)],

pn=12

fk,0) =
(C12)

where the new operators, éﬂ(k) and é;(k):[éﬂ(k)]ﬂ annihi-
late and create, respectively, the coupled exciton-photon ex-
citations of branch w on the nanotube surface. They satisfy
the bosonic commutation relations of the form

z &t '
[glu(k)7 gﬂ!(k )] = 5;1,;1,’51(1(’ > (C13)
which, along with the reversibility requirement of Egs. (C11)
and (C12), impose the following constraints on the transfor-
mation functions u,, and v ,:

> [u;(k, w)u, (K o) -v (K, wf)v;,(k, wy)]
f

+ f dw[uﬂ(k,w)uz,(k, w) v, (K0, (k 0)]=4,,
0
2 [k 0p)u (K, 0p) = 07, (K, 0w (K, 7)1 = &

> [u,(k, 0)u,(k,0") - v, (k,0)v,k o")]= 8lo- o).
s

Here, the first equation guarantees the fulfillment of the com-
mutation relations (C13), whereas the second and the third

ensure that Egs. (C11) and (C12) are inverted to yield éﬂ(k)
as given by Eq. (15). Other possible combinations of the
transformation functions are identically equal to zero.

The proper transformation functions that diagonalize the
Hamiltonian (C10) to bring it to the form (14) are deter-
mined by the identity

11w, (K)€,(K) = [£,(K), Hy].

Putting Egs. (15) and (C10) into Eq. (C14) and using the
bosonic commutation relations for the exciton and photon
operators on the right, one obtains (k argument is omitted for
brevity)

(Cl14)

(ho, — Ef)u;(a)f) =- if doD ()[u,(w) - v;(w)],
0

(hw, + Epv ,(wp) = if doD(0)[u,(w) -v,(0)],
0

(@, — 0u,(w) =i 2, Do) () +v,(w)],
f
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fi(w, + )v)(0) =i 2 Dlw)u,(w) +v,(w)].
-

These simultaneous equations define the complex transfor-
mation functions u,, and v, uniquely. They also define the
dispersion relation (the energies fiw,, u=1,2) of the coupled
exciton-photon (or exciton-plasmon, to be exact) excitations
on the nanotube surface. Substituting u,, and U; from the
third and fourth equations into the first one, one has

4E, [*  o|DAw)]
hw,—E;— ! jd ! *(w)) =0,
{ Cu B o, +E;] wh(wi—wz) u'u(wf)

whereby, since the functions u’; are nonzero, the dispersion
relation we are interested in becomes

w|Df(w)|2
ﬁ(wi— ?)

(hw,)* - E; - 4E; f do =0. (Cl15)
0

The energy E| of the ground state of the coupled exciton-
plasmon excitations is found by plugging Eq. (15) into Eq.
(14) and comparing the result to Egs. (C9) and (C10). This
yields

=S e <k>{2 btk [ wdwwu(k,w)ﬁ].
kou=1,2 0

Using further D{w) as explicitly given by Eq. (C8), the dis-
persion relation (C15) is rewritten as follows:

ES)d> | [ o*Rel/o,
o7 ZSUL[ [ el
4R | o w,- o
m(clk,])* Re[ /o (c|k.])]
a)i—(c|kz|)2

Here, we have taken into account the general property
o (w)=0._(-w), which originates from the time-reversal
symmetry requirement, in the second term on the right-hand
side. This term comes from the two delta functions in
|D{w)[* and describes the contribution of the spatial disper-
sion (wave-vector dependence) to the formation of the
exciton-plasmons. We neglect this term in what follows be-
cause the spatial dispersion is neglected in the nanotube’s
axial surface conductivity in our model and, second, because
it is seen to be very small for not too large excitonic wave
vectors. Thus, converting to the dimensionless variables (17),
we arrive at the dispersion relation (16) with the exciton
spontaneous decay (recombination) rate and the plasmon
DOS given by Egs. (18) and (19), respectively.

Lastly, bearing in mind that the delta functions in |D{w)|*
are responsible for the spatial dispersion which we neglect in
our model and therefore dropping them out from the squared
interaction matrix element (C7), we arrive at the property
(45).

APPENDIX D: EFFECTIVE LONGITUDINAL POTENTIAL
IN THE PRESENCE OF THE PERPENDICULAR
ELECTROSTATIC FIELD

Here, we analyze the set of Egs. (26)—(28) and show that
the attractive cusp-type cutoff potential (31) with the field
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dependent cutoff parameter (32) is a uniformly valid ap-
proximation for the effective electron-hole Coulomb interac-
tion potential (29) in the exciton binding energy Eq. (28).

We rewrite Egs. (26) and (27) in the form of a single
equation as follows:

d2
( +q +pcosqo)¢(qo) 0. (D1)

d 2

Here, o= et Y= q=Ren\2mepe.,/h,  and
p=*2em, hRCNF /% with the (+) sign to be taken for the
electron and the (—) sign to be taken for the hole. We are
interested in the solutions to Eq. (D1) which satisfy the
2r-periodicity condition ¢{¢)=y(¢+2m). The change of
variable ¢@=2¢ transfers this equation to the well-known
Mathieu’s equation (see, e.g., Refs. 83 and 84), reducing the
solution’s period by the factor of 2. The exact solutions of
interest are, therefore, given by the odd Mathieu functions
S€ymin(t=@/2) with the eigenvalues b,,,,,, where m is a non-
negative integer (notations of Ref. 83). These are the solu-
tions to the Sturm-Liouville problem with boundary condi-
tions on functions, not on their derivatives.

PHYSICAL REVIEW B 80, 085407 (2009)

It is easier to estimate the z dependence of the potential
(29) if the functions ¢, (¢, ;) are known explicitly. So, we
do solve Eq. (D1) using the second-order perturbation theory
in the external field (the term p cos ¢). The second-order
field corrections are also of practical importance in the most
of experimental applications.

The unperturbed problem yields the two linearly indepen-
dent normalized eigenfunctions and the eigenvalues as fol-
lows:

ex i R
p(= ] ) 4= CN ©)

¢0)( )= ’ = 7\2me,h8e,h’

. o (D2)

with j being a non-negative integer. The energles s(o)(]) are
doubly degenerate with the exception of & h(O) 0, which we
will discard since it results in the zero unperturbed band gap
according to Eq. (8). The perturbation p cos ¢ does not lift
the degeneracy of the unperturbed states. Therefore, we use
the standard nondegenerate perturbation theory with the ba-
sis wave functions set above (plus sign selected for definite-
ness) to calculate the energies and the wave functions to the
second order in perturbation. The standard procedure (see,
e.g., Ref. 85) yields

3 9 -2) 1 24 RN ) 0) N { 9(j - 2) ‘/’E‘g)le,h((Pe,h)
lﬂje,h(%,h) = (1 - { [(]-_ 1)2 _jz]z + [(]- + 1)2 _jz]z} 44 F? lpje,h(‘»oe,h) - (]. _ 1)2 2
/+le h(‘Pe ) } me,hER%NF 9(j - 2)9(j - 3) lﬁ(o 2¢ h(QDe,h) ]+2€ h(QDe ) m?,hezR?:NFz
(1 +1)7 - h? (-1 G -27-77] [(1 +1)7 =716 +2)* - /%] At '

(D3)

Here, j is a positive integer and the theta-functions ensure that j=1 is the ground state of the system. The corresponding
energies are as follows:

h2j? I pey
Een = / 2 = ch 2CN szs (D4)
Zme,hRCN Zﬁ

with w; given by Eq. (33), thus, according to Eq. (8), resulting in the nanotube’s band gap as given by Eq. (36).
From Eq. (D3), in view of Eq. (D2), we have the following to the second order in the field:

2 6
RCNUJ Fz
ﬁ4

3
eRenw;

1
|¢e Pe | |¢h(@h)|2 172 |:1 2(mh COS @, —m, COS ()De) F+ Z(mi cos Z(Ph + mg Cos 2()06)

RO
—4uM,, cos @, cos (ph#LFZ}, (D5)
where
CaG-2) [ 9G-3) 1 1
G-l G272 T G0 =2 TG+ D = G+ 27 -

Plugging Egs. (D5) and (30) into Eq. (29) and noticing that the integrals involving linear combinations of the cosine functions
are strongly suppressed due to the integration over the cosine period and are therefore negligible compared to the one
involving the quadratic cosine combination, we obtain

21 2
1 -2 cos ¢, cos ¢, A{(F)
Ve (<) =— d e d ) ’
e === fo 2 f o N2+ 4Ry sin (o, - o212

(D6)
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with A,(F) given by Eq. (33).
The next step is to perform the double integration in Eq.
(D6). We have to evaluate the two double integrals. They are

2 21 d
[
=), ) TRl 2l
(D7)
and
, fz"d 2 d, cos @, cos @,
2= Pe - :
0 o {2 +4R¢y sin”[(@, — @,)/2]}"?
(D8)

We first notice that both /; and I, can be equivalently rewrit-
ten as follows:

2 2m 2 Pe
f dsoef d‘Ph"'=2f d%f dey -,
0 0 0 0

due to the symmetry of the integrands with respect to the
(¢,=¢y)-line. Using this property, we substitute ¢, with the
new variable t=sin[(¢,—¢;,)/2] in Egs. (D7) and (D8). This,
after simplifications, yields

(D9)

I1 = 4]2" dQD fsm(%m > i
o Jo ) (2 + 4R
(D10)
and
L= 4J2W do cos? L2 fsm(%m Ll 2t2) .
o Jo [(1 - A)(2*+ 4R
(D11)

Here, the inner integrals are reduced to the incomplete ellip-
tical integrals of the first and second kinds (see, e.g., Ref.
84).

We continue the evaluation of Egs. (D10) and (D11) by
expanding the denominators of the integrands in series at
large and small |z| as compared to the CN diameter 2Rcy.
One has

1 1 [1 1 (2RCNz>2 3(2RCNt)4
_— = — _— + = —
(+4RSNA)" 2L 2\ [ 8\ ]

5 (ZRCNI)6 }
— — + ..
16\ ]

for |z|/2Rcn>1 and

fsin(%/z) dtf(t)
. [( 2)(Z +4RCNt2)]1/2
| . J‘Sln(%/z) f(t)
_ lim -2
2ReN (2Ren)—0J 2R Wi-r

for |z|/2Rcn<<1 [f(?) is a polynomial function]. Using these
in Egs. (D10) and (D11), we arrive at
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4 4R 1 2
nf (sh) (W],
/- Ren |2 4\2RcN 2RceN
! 4772[ 1<2RCN>2 9 (2R0N>4} 12|
Zli-= +— , > 1
|2 4\ [ 64\ |z] 2Rcx

and

47| 1 (4R 3 2
_W{_ln<ﬂ>_1+_< | H 1,
I~ Renl 2 |2] 8\2Rcn 2RcN
20 2 <2RCN>2{ 3(2RCN>2} 2|
- 1-= , =L,
4z \ [z 4\ ] 2Rcx

Plugging these I; and I, into Eq. (D6) and retaining only
leading expansion terms yields

<1

B 62[1 - Aj(F)]ln(4RCN) |Z|
|Z| 2Ren
l2]

— > 1.
2Rcn

7TERCN
Ver(z) = 2

(D12)

We see from Eq. (D12) that, to the leading order in the
series expansion parameter, the perpendicular electrostatic
field does not affect the longitudinal electron-hole Coulomb
potential at large distances |z|>2Rqy, as one would expect.
At short distances |z| <2Rcy. the situation is different, how-
ever. The potential decreases logarithmically with the field
dependent amplitude as |z| goes down. The amplitude of the
potential decreases quadratically as the field increases [see
Eq. (33)], thereby slowing down the potential fall-off with
decreasing |z| or, in other words, making the potential shal-
lower as the field increases. Such a behavior can be uni-
formly approximated for all |z| by an appropriately chosen
attractive cusp-type cutoff potential with the field-dependent
cutoff parameter. Indeed, consider the dimensionless func-
tion f(y)=—2Rc-n€eVey/e* of the dimensionless variable
=|z|/2Rcn. Then, according to Eq. (D12), one has

®,(y) = =1 —Aj(F)]ln(§>, 0<y<l1
fly)=

Dy(y) = y>1.

‘<I~ﬁ|w

Now introduce the function

O(y) = (D13)

y+y0

with the cutoff parameter y, selected in such a way as to
satisfy the condition ®(1)=[®P(1)+D,(1)]/2. This yields

Cm=2m2[1-A(F)]
Yo 22 [1—A;(F)]' (D14)
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FIG. 8. (Color online) The dimensionless function (D13) with
the zero-field cutoff parameter (D14). See text for details.
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Figure 8 shows the zero-field behavior of the ®(y) func-
tion as compared to the corresponding ®,(y) and ®,(y) func-
tions. We see that ®(y) gradually approaches ®,(y)=1/y for
increasing y>1. For decreasing y<<1, on the other hand,
d(y) is very close to the logarithmic behavior as given by
®,(y), with the exception that there is no divergence at y
~0 due to the presence of the cutoff. The cutoff parameter
(D14) is field dependent, decreasing as the field grows,
which is consistent with the behavior of the original potential
(D12). Multiplying Eq. (D13) by the dimensional factor
—e?/2Rcne and putting y=|z|/2Rcy, We obtain the attractive
longitudinal cusp-type cutoff potential (31) we build our
analysis on in this paper.
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